## EE2202 ELECTROMAGNETIC THEORY Lecture Notes for EEE - Third (3rd) Semester

EE2202 Lecture Notes

Syllabus :

UNIT I INTRODUCTION
Sources and effects of electromagnetic fields – Vector fields – Different co-ordinate systems- vector
calculus – Gradient, Divergence and Curl - Divergence theorem – Stoke’s theorem.

UNIT II ELECTROSTATICS
Coulomb’s Law – Electric field intensity – Field due to point and continuous charges – Gauss’s law
and application – Electric potential – Electric field and equipotential plots – Electric field in free
space, conductors, dielectric -Dielectric polarization - Dielectric strength - Electric field in multiple
dielectrics – Boundary conditions, Poisson’s and Laplace’s equations – Capacitance- Energy
density.
UNIT III MAGNETOSTATICS
Lorentz Law of force, magnetic field intensity – Biot–savart Law - Ampere’s Law – Magnetic field due
to straight conductors, circular loop, infinite sheet of current – Magnetic flux density (B) – B in free
space, conductor, magnetic materials – Magnetization – Magnetic field in multiple media – Boundary
conditions – Scalar and vector potential – Magnetic force – Torque – Inductance – Energy density –
Magnetic circuits.

UNIT IV ELECTRODYNAMIC FIELDS
Faraday’s laws, induced emf – Transformer and motional EMF – Forces and Energy in quasistationary
Electromagnetic Fields - Maxwell’s equations (differential and integral forms) –
Displacement current – Relation between field theory and circuit theory.

UNIT V ELECTROMAGNETIC WAVES
Generation – Electro Magnetic Wave equations – Wave parameters; velocity, intrinsic impedance,
propagation constant – Waves in free space, lossy and lossless dielectrics, conductors-skin depth,
Poynting vector – Plane wave reflection and refraction – Transmission lines – Line equations – Input
impedances – Standing wave ratio and power.