NUMERICAL METHOD QUESTION BANK FOR ALL FIVE UNITS (FOURTH SEMESTER -EEE,MECH,CIVIL DPT)

  
NUMERICAL METHIODS

Unit I : Solution of equations and eigen value problems

Part  A

1.      If g(x) is continuous in [a,b] then under what condition the iterative method x = g(x) has unique solution in [a,b].

2.      By Newton’s method find an iterative formula to find 1/N.

3.      Find the positive root of x3 + 5x – 3 = o usind fixed point iteration method with 0.6 as first approximation.

æ1  3 ö

4.
Find inverse of A =  ç


÷ by Gauss – Jordan method.


ç
2
7
÷


è
ø





5.      State the convergence and order of convergence for method of false position.
6.      Why Gauss Seidel iteration is a method of successive corrections.

7.      Compare Gauss Jacobi and Gauss Siedel methods for solving linear system of the form AX = B.

8.      State the conditions for convergence of Gauss Siedel method for solving a system of equations.
9.    Find an iterative formula to find      N   where N is a positive number.

10.  Compare Gaussian elimination method and Gauss-Jordan method.
11.  What type of eigen value can be obtained using power method.

12.  State the order of convergence and convergence condition for Newton Raphson,s method.
13. Find the dominant eigen value of A =  é1  2 ù
by power method.

ê
3  4
ú


ë
û





14.  How is the numerically smallest eigen value of A obtained.

15.  State two difference between direct and iterative methods for solving system of equations.


Part B

1.      Consider the non – linear system x2 – 2x – y +0.5 =0 and x2+4y2 – 4 = 0. Use Newton – Raphson method with the starting value (x0, y0) = (2.00, 0.25) and compute (x1, y1), (x2, y2) and (x3, y3) .

2.      Fins the real root of  xex  – 3  = 0 by regula - falsi method.

3.      Find the real root using method of false position for x3 – 2x – 5 = 0 coreect to three decimal places.





é 2
-1
0 ù


4.
Find all the eigen values of the matrix
ê


ú
by power method (Apply


-1
2
-1



ê


ú




ê 0
-1
2 ú




ë


û



only 3 iterations).







5.      Use Newton’s backward difference formula to construct an interpolating polynomial of degree 3 for the data:

f( - 0.75) = - 0.0718125, f( - 0.5) = - 0.02475, f( - 0.25) = - 0.3349375 and f(0) = 1.101. Hence find f (- 13 ).
6.    Solve the system of equations using Gauss Seidel iterative methods.
20x – y – 2z = 17, 3x + 20y – z = -18, 2x – 3y +20z = 25. 7.Find the largest eigen values and its corresponding vector of the matrix



é 1
3
-1ù


ê
3
2
4
ú
by power method.

ê
ú






ê-1
4
10 ú


ë



û



8.  Using Gauss- Jordan obtain the inverse of the matrix








é2
2
3ù

ê
2
1
1
ú

ê
ú





ê1
3
5ú

ë



û




9.      Using Gauss Seidel method solve the system of equations starting with the values
x  = 1 , y = -2 and z = 3,
x   + 3y + 5z = 173.61, x – 27y + 2z = 71.31, 41x – 2y + 3z = 65.46

10.  Solve the following equations by Jacobi’s iteration method
x   + y +  z = 9, 2x – 3y + 4z = 13, 3x + 4y + 5z = 40.


Unit II : Interpolation and Approxiamtion

Part A

  1. Construct a linear interpolating polynomial given the points (x0,y0) and (x1,y1).
  1. Obtain the interpolation quadratic polynomial for the given data by using
Newton’s forward difference formula.
X :
0
2
4
6
Y :
-3
5
21
45
3.  Obtain the divided difference table for the following data.

X : -1     0
2
3

Y : -8     3
1
12
4.
Find the polynomial which takes the following values.

X
:
0
1
2

Y
:
1
2
1
5.      Define forward, backward, central differences and divided differences.

6.      Evaluate  D10 (1-x) (1-2x) (1-3x)--------(1-10x), by taking h=1.
7.      Show that the divided difference operator  D is linear.
8.      State the order of convergence of cubic spline.
9.      What are the natural or free conditions in cubic spline.
10. Find the cubic spline for the following data

X : 0
2



4
6


Y : 1
9



21
41

11.
State the properties of divided differences.



3
1


-1


12.
Show that  D  (

)
=

.

a
abcd



bcd




13.    Find the divided differences of f(x) = x3  + x + 2 for the arguments 1,3,6,11.
14.    State Newton’s forward and backward interpolating formula.
15.    Using Lagranges find y at x = 2 for the following
X : 0
1
3
4
5
Y : 0
1
81
256
625




Part B

1.      Using Lagranges interpolation formula find y(10) given that y(5) = 12, y(6) = 13, y(9) = 14 and y(11) = 16.

2.      Find the missing term in the following table
x : 0
1
2
3
4
y : 1
3
9
-
81

3.  From the data given below find the number of students whose weight is between
60  to 70.

Wt (x)    :    0-40           40-60        60-80        80-100            100-120


No of
students :     250              120           100             70                    50

4. From the following table find y(1.5) and y’(1) using cubic spline.
X  :    1          2          3
Y  :  -8        -1        18

5.  Given sin 450  = 0.7071, sin 500 = 0.7660, sin 550   = 0.8192, sin 600  = 0.8660, find

sin 520  using Newton’s forward interpolating formula.

6.  Given log 10  654 = 2.8156, log 10  658 = 2.8182, log 10  659 = 2.8189, log 10  661 =
2.8202, find using Lagrange’s formula the value of log 10  656.

7.  Fit a Lagrangian interpolating polynomial y = f(x) and find f(5)

x : 1

3
4
6



y : -3
0
30
132


8.
Find y(12) using Newton’ forward interpolation formula given

x :
10

20
30
40
50

y :
46

66
81
93
101

9.    Obtain the root of f(x) = 0 by Lagrange’s inverse interpolation given that f(30) = -30, f(34) = -13, f(38) = 3, f(42) = 18.

10.  Fit a natural cubic spline for the following data
x : 0
1
2
3
y : 1
4
0
-2

11.  Derive Newton’s divided difference formula.

12.  The following data are taken from the steam table:
Temp0 c :
140
150
160
170
180
Pressure :
3.685
4.854
6.502
8.076
10.225
Find the pressure at temperature t = 1420
and at t = 1750

13.     Find the sixth term of the sequence 8,12,19,29,42.

14.    From the following table of half yearly premium for policies maturing at different
ages, estimate the premium for policies maturing at the age of 46.
Age x :
45
50
55

60
65
Premium y : 114.84
96.16
83.32

74.48
68.48
15. Form the divided difference  table for the following data
x   :
-2
0
3
5
7
8
y :   -792
108
-72
48
-144
-252


Unit III
Differentiation and Integration


Part A

1.      What the errors in Trapezoidal and Simpson’s rule.
2.      Write Simpson’s 3/8 rule assuming 3n intervals.
1       dx
3.       Evaluate  ò1+ x 4     using Gaussian quadrature with two points.
-1
4.      In Numerical integration what should be the number of intervals to apply
Trapezoidal, Simpson’s 1/3 and Simpson’s 3/8.
5.
Evaluate
1
x 2 dx
using Gaussian three point quadrature formula.

ò


1+ x 4



-1










1


6.
State two point Gaussian quadratue formula to evaluate
ò
f (x)dx .













-1



7.      Using Newton backward difference write the formula for first and second order derivatives at the end value x = x0 upto fourth order.
8.
Write down the expression for
dy
and
d 2 y
at x = x0    using Newtons forward

dx
dx 2







difference formula.






9.
State Simpson’s 1/3 and Simpson’s 3/8 formula.



P





10.
Using trapezoidal rule evaluate
ò
sin xdx  by dividing into six equal parts.










0







Part B

1.    Using Newton’s backward difference formula construct an interpolating polynomial of degree three and hence find f(-1/3) given f(-0.75) = - 0.07181250, f(-0.5) =

- 0.024750, f(-0.25) = 0.33493750, f(0) = 1.10100.

2.
Evaluate
òò
dxdy
by Simpson’s 1/3 rule with  Dx =Dy = 0.5 where 0



1+ x + y















3.
Evaluate I =
2  2  dx dy   by using Trapezoidal rule, rule taking h= 0.5 and h=0.25.




òò







1  1    x + y





Hence the value of the above integration by Romberg’s method.

4.
From the following data find y’(6)



X : 0
2

3
4
7
9


Y:  4
26

58
112
466
922



5.
Evaluate
2  2      dx dy
numerically with h= 0.2 along x-direction and k = 0.25 along y

òò x 2  + y 2



1  1






direction.






6.
Find the value of sec (31) from the following data


q(deg ree) :  31

32
33
34


Tan  q
:  0.6008
0.6249
0.6494
0.6745

7.      Find the value of x for which f(x) is maxima in the range of x given the following table, find also maximum value of f(x).

X:
9
10
11
12
13
14
Y : 1330
1340
1320
1250
1120
930

8.      The following data gives the velocity of a particle for 20 seconds at an interval of five seconds. Find initial acceleration using the data given below


Time(secs) :

0
5

10
15
20



Velocity(m/sec): 0
3

14
69
228





7

dx










9.
Evaluate



using Gaussian quadrature with 3 points.



ò

2






3 1+ x










10. For a given data
find
dy
and
d 2 y
at x = 1.1





dx 2












dx






X :
1.0




1.1
1.2

1.3
1.4
1.5
1.6


Y:
7.989

8.403
8.781

9.129
9.451
9.750
10.031



UNIT – IV : INITIAL VALUE PROBLEMS FOR ORDINARY DIFFERENTIAL
EQUATIONS


PART – A
1.
By Taylor series, find y(1.1) given   y¢ = x + y, y(1) = 0.
2.
Find the Taylor series upto x3 term satisfying  2 y¢ + y = x +1, y(0) = 1.

dy
3.
Using Taylor series method find y at x = 0.1 if  dx  = x 2 y -1, y(0) = 1 .
4.      State Adams – Bashforth predictor and corrector formula.

5.      What is the condition to apply Adams – Bashforth method ?




dy

6.
Using modified Euler’s method, find
y(0.1)
if
dx  = y 2
+ x 2 , y(0) = 1.
7.      Write down the formula to solve 2nd order differential equation using Runge-Kutta method of 4th order.

8.      In the derivation of fourth order Runge-Kutta formula, why is it called fourth order.

9.      Compare R.K. method and Predictor methods for the solution of Initial value problems.

10.
Using   Euler’s   method   find   the   solution   of   the
IVP
dydx  = log( x + y), y(0) = 2


at x = 0.2  taking  h = 0.2 .























PART-B
















11.
The
differential
equation

dy
= y - x2

is
satisfied







dx


































by y(0)= 1, y(0.2)= 1.12186, y(0.4)= 1.46820, y(0.6)= 1.7379 .Compute  the  value


of   y(0.8) by Milne’s predictor - corrector formula.










12.
By  means  of  Taylor’s  series  expension,  find  y  at
x  =  0.1,and  x  =  0.2  correct  to


three decimals places, given

dy
- 2 y = 3e x    , y(0) =
0.



















dx




























13.
Given
y¢¢ + xy¢ + y = 0, y(0) = 1, y¢(0) = 0,
find
the

value
of
y(0.1)
by   using


R.K.method of fourth order.





























dy










14.
Using Taylor;s series method find y at x = 0.1,
if
dx  = x 2 y -1 , y(0)=1.




dy



















15.
Given
dx  = x 2 (1 + y) ,  y(1)  =  1,  y(1.1)  =  1.233,  y(1.2)  =  1.548,  y(1.3)=1.979,


evaluate y(1.4) by Adam’s- Bashforth method.














16.
Using  Runge-Kutta  method  of  4th   order,  solve


dy

=

y 2
- x 2

with  y(0)=1  at



dx


y 2
+ x 2





















x=0.2.




















17.
Using
Milne’s   method   to
find
y(1.4)   given

that
5xy¢ = y 2   - 2 = 0 given   that


y(4) = 1, y(4.1) = 1.0049, y(4.2) = 1.0097, y(4.3) = 1.0143.







18.
Given










dy
= x3   + y, y(0) = 2, y(0.2) = 2.443214, y(0.4) = 2.990578, y(0.6) = 3.823516







dx













find  y(0.8)   by Milne’s predictor-corrector method taking h = 0.2.




19.
Using
R.K.Method
of
order   4,   find
y   for   x   =   0.1,   0.2,
0.3
given
that



dy
= xy + y 2 , y(0) = 1 also find the solution at x = 0.4 using Milne’s method.









dx














20.  Solve  dydx  = y - x 2 , y(0) = 1.

Find y(0.1) and y(0.2) by R.K.Method of order 4.

Find y(0.3) by Euler’s method.
Find y(0.4) by Milne’s predictor-corrector method.
21.
Solve
y¢¢ - 0.1(1 - y 2 ) y¢ + y = 0   subject  to
y(0) = 0, y¢(0) = 1  using  fourth  order


Runge-Kutta Method.





Find  y(0.2)   and    y¢(0.2) . Using step size
Dx = 0.2 .



22.
Using 4th  order RK Method compute y for x = 0.1 given   y¢ =
xy
given y(0) =



1 + x 2








1 taking h=0.1.







dy



23.
Determine the value of y(0.4) using Milne’s method given   dx  = xy + y 2 , y(0) = 1,

use Taylors series to get the value of y at x = 0.1, Euler’s method for y at x = 0.2 and RK 4th order method for y at x=0.3.

24.  Consider the IVP  dydx  = y - x 2   +1, y(0) = 0.5

(i)                 Using the modified Euler method, find y(0.2).
(ii)               Using R.K.Method of order 4, find y(0.4) and y(0.6).
(iii)             Using Adam- Bashforth predictor corrector method, find y(0.8).
25. Consider the second order IVP y¢¢ - 2 y¢ + 2 y = e2t S int, with y(0) = -0.4 and y’(0)=-0.6.

(i)                 Using Taylor series approximation, find y(0.1).
(ii)               Using R.K.Method of order 4, find y(0.2).


UNIT-5

PART-A
  1. Define the local truncation error.

  1. Write down the standard five point formula used in solving laplace equation U xx + U yy = 0 at the point ( iDx, jDy ).

  1. Derive Crank-Niclson scheme.

  1. State Bender Schmidt’s explicit formula for solving heat flow equations

5.    Classify x 2  f xx  + (1-y 2  ) f yy  = 0

6.  What is the truncation error of the central difference approximation of

y '  (x)?

7. What is the error for solving Laplace and Poissson’s equation by finite difference method.

8. Obtain the finite difference scheme fore the difference equations 2 d 2 y + y = 5. dx 2
9.  Write dowm the implicit formula to solve the one dimensional heat equation.

  1. Define the diagonal five point formula .


PART B

1.    Solve the equqtion  U t  = U xx    subject to condition  u(x,0) = sin px ; 0 £ x £ 1,u(0,t)

=

u(1,t) =0 using Crank- Nicholson method taking h = 1/3  k = 1/36(do on time
step)

  1. Solve U xx  + U yy  =  0 for the following square mesh with boundary values

1            2

u 1
u 2

1
4

u 3
u 4



2
5












4
5






3. Solve U xx  =  U tt    with boundary condition u(0,t) = u(4,t) and the initial condition




u t  (x,0) = 0 , u(x,0)=x(4-x) taking h =1, k = ½
(solve one period)



4.
Solve xy II  + y = 0 , y(1) =1,y(2) = 2, h = 0.25
by finite difference method.



5.
Solve the boundary value problem    xy II  -2y + x = 0, subject to y(2) = 0 =y(3).Find




y(2.25),y(2.5),y(2.75).







6 .  Solve the vibration problem  y  = 4
2 y
subject to the boundary conditions





t
x 2






y(0,t)=0,y(8,0)=0 and y(x,0)= 12 x(8-x).Find y at x=0,2,4,6.Choosing  D x = 2,  D t =


1
up







2









compute  to 4 time steps.







7.
Solve  D2 u = -4(x + y) in the region given 0 £ x £ 4,  0 £ y £ 4.  With all boundaries

kept









at
0 0
and choosing
D x =  D y = 1.Start with zero vector and do 4 Gauss- Seidal

iteration.













0 0
0 0
0 0
0 0
0 0







0 0












0 0
























0 0












0 0
0 0
0 0
0 0
0 0


















8.
Solve u xx  + u yy  = 0
over the square mesh of
sid
e 4 units, satisfying the
following







conditions .







u(x,0) =3x
for
0 £ x £ 4




u(x, 4)
= x 2
for
0 £ x £ 4




u(0,y) =  0,
for
0 £ y £ 4




u(4,y)
= 12+y
for 0 £ y £ 4


9.
Solve    2u
- 2 u  = 0, given that u(0,t)=0,u(4.t)=0.u(x,0)=x(4-x).Assume


x 2
t




h=1.Find







the
values of u upto t =5.





10.    Solve y tt  = 4y xx    subject to the condition   y(0,t) =0, y(2,t)=o, y(x,o) = x(2-x),

y (x,0) = 0 . Do 4steps and find the values upto 2 decimal accuracy.
t




Previous
Next Post »